38 research outputs found

    Cerebrospinal fluid findings in adults with acute Lyme neuroborreliosis

    Get PDF
    Presence of BB-specific antibodies in the cerebrospinal fluid (CSF) with evidence of their intrathecal production in conjunction with the white cell count in the CSF and typical clinical symptoms is the traditional diagnostic gold standard of Lyme neuroborreliosis (LNB). Few data are available on the CSF lactate concentration in European adults with the diagnosis of acute LNB. The objective of the study was to investigate the CSF changes during acute LNB. Routine CSF parameters [leukocyte count, protein, lactate and albumin concentrations, CSF/serum quotients of albumin (QAlb), IgG, IgA and IgM, and oligoclonal IgG bands] and the Borrelia burgdorferi (BB)-specific antibody index were retrospectively studied in relation to the clinical presentation in patients diagnosed with acute LNB. A total of 118 patients with LNB were categorized into the following groups according to their symptoms at presentation; group 1: polyradiculoneuritis (Bannwarthā€™s syndrome), group 2: isolated facial palsy and group 3: predominantly meningitic course of the disease. In addition to the CSF of patients with acute LNB, CSF of 19 patients with viral meningitis (VM) and 3 with neurolues (NL) were analyzed. There were 97 patients classified with definite LNB, and 21 as probable LNB. Neck stiffness and fever were reported by 15.3% of patients. Most of these patients were younger than 50Ā years. Polyradiculoneuritis was frequently found in patients older than 50Ā years. Lymphopleocytosis was found in all patients. Only 5 patients had a CSF lactate ā‰„3.5Ā mmol/l, and the mean CSF lactate level was not elevated (2.1Ā Ā±Ā 0.6Ā mmol/l). The patients with definite LNB had significantly higher lactate levels than patients with probable LNB. Elevated lactate levels were accompanied by fever and headache. In the Reiber nomograms, intrathecal immunoglobulin synthesis was found for IgM in 70.2% followed by IgG in 19.5%. Isoelectric focussing detected an intrathecal IgG synthesis in 83 patients (70.3%). Elevated BB AIs in the CSF were found in 97 patients (82.2%). Patients with VM showed lower CSF protein concentration and CSF/serum quotients of albumin than LNB patients. In acute LNB, all patients had elevated cerebrospinal fluid (CSF) leukocyte counts. In contrast to infections by other bacteria, CSF lactate was lower than 3.5Ā mmol/l in all but 5 patients. The CSF findings did not differ between polyradiculoneuritis, facial palsy, and meningitis. The CSF in LNB patients strongly differed from CSF in VM patients with respect to protein concentration and the CSF/serum albumin quotient

    Tinnitus- related distress: evidence from fMRI of an emotional stroop task

    No full text
    Abstract Background Chronic tinnitus affects 5Ā % of the population, 17Ā % suffer under the condition. This distress seems mainly to be dependent on negative cognitive-emotional evaluation of the tinnitus and selective attention to the tinnitus. A well-established paradigm to examine selective attention and emotional processing is the Emotional Stroop Task (EST). Recent models of tinnitus distress propose limbic, frontal and parietal regions to be more active in highly distressed tinnitus patients. Only a few studies have compared high and low distressed tinnitus patients. Thus, this study aimed to explore neural correlates of tinnitus-related distress. Methods Highly distressed tinnitus patients (HDT, nā€‰=ā€‰16), low distressed tinnitus patients (LDT, nā€‰=ā€‰16) and healthy controls (HC, nā€‰=ā€‰16) underwent functional magnetic resonance imaging (fMRI) during an EST, that used tinnitus-related words and neutral words as stimuli. A random effects analysis of the fMRI data was conducted on the basis of the general linear model. Furthermore correlational analyses between the blood oxygen level dependent response and tinnitus distress, loudness, depression, anxiety, vocabulary and hypersensitivity to sound were performed. Results Contradictory to the hypothesis, highly distressed patients showed no Stroop effect in their reaction times. As hypothesized HDT and LDT differed in the activation of the right insula and the orbitofrontal cortex. There were no hypothesized differences between HDT and HC. Activation of the orbitofrontal cortex and the right insula were found to correlate with tinnitus distress. Conclusions The results are partially supported by earlier resting-state studies and corroborate the role of the insula and the orbitofrontal cortex in tinnitus distress

    Neural correlates of tinnitus related distress: an fMRI-study

    No full text
    Chronic tinnitus affects approximately 5% of the population. Severe distress due to the phantom noise is experienced by 20% of the tinnitus patients. This distress cannot be predicted by psychoacoustic features of the tinnitus. It is commonly assumed that negative cognitive emotional evaluation of the tinnitus and its expected consequences is a major factor that determines the impact of tinnitus-related distress. Models of tinnitus distress and recently conducted research propose differences in limbic, frontal and parietal processing between highly and low distressed tinnitus patients. An experimental paradigm using verbal material to stimulate cognitive emotional processing of tinnitus-related information was conducted. Age and sex matched highly (n = 16) and low (n = 16) distressed tinnitus patients and healthy controls (n = 16) underwent functional magnetic resonance imaging (fMRI) while sentences with neutral, negative or tinnitus-related content were presented. A random effects group analysis was performed on the basis of the general linear model. Tinnitus patients showed stronger activations to tinnitus-related sentences in comparison to neutral sentences than healthy controls in various limbic/emotion processing areas, such as the anterior cingulate cortex, midcingulate cortex, posterior cingulate cortex, retrosplenial cortex and insula and also in frontal areas. Highly and low distressed tinnitus patients differed in terms of activation of the left middle frontal gyrus. A connectivity analysis and correlational analysis between the predictors of the general linear model of relevant contrasts and tinnitus-related distress further supported the idea of a fronto-parietal-cingulate network, which seems to be more active in highly distressed tinnitus patients. This network may present an aspecific distress network. Based on the findings the left middle frontal gyrus and the right medial frontal gyrus are suggested as target regions for neuromodulatory approaches in the treatment of tinnitus. For future studies we recommend the use of idiosyncratic stimulus material.<br/

    Neural correlates of tinnitus annoyance and its reduction after cognitive-behavioural training: results from an emotional stroop task

    No full text
    Tinnitus describes the perception of sound in the absence of external noise. About 5% of the population is affected by chronic tinnitus. About 20% of the tinnitus afflicted individuals experience severe distress due to the phantom noise. Negative cognitive emotional evaluation of tinnitus and its assumed consequences are commonly believed to be a major factor determining tinnitus-related distress. Models of tinnitus distress and recently conducted research propose a fronto-parietal-cingulate network to be more active in highly distressed tinnitus patients. The aim of the study was to identify brain regions, which are more active in highly distressed tinnitus patients during the processing of tinnitus-related stimuli in comparison to low distressed tinnitus patients and healthy controls. We examined three groups of age and sex matched participants; highly distressed tinnitus patients (nā€‰=ā€‰16; mean age: 53.38; SDā€‰=ā€‰12.33), low distressed tinnitus patients (nā€‰=ā€‰16; mean age: 52.25; SDā€‰=ā€‰11.73) and healthy controls (nā€‰=ā€‰16; mean age: 52.75; SDā€‰=ā€‰9.40) by the means of functional magnetic resonance imaging (fMRI). The participants underwent fMRI while performing an emotional Stroop task, which consisted of colored tinnitus-related words and neutral words. The participants had to name the color of each presented word via button press on a four-button-response pad. A subgroup of the highly distressed tinnitus patients received a cognitive-behavioral training, which aimed to reduce tinnitus-related distress. Responders to the training and age and sex matched low distressed tinnitus patients underwent the emotional Stroop task for a second time. The final results will be presented

    Transcranial direct current stimulation over the primary motor cortex during fMRI

    Full text link
    Measurements of motor evoked potentials (MEPs) have shown that anodal and cathodal transcranial direct current stimulations (tDCS) have facilitatory or inhibitory effects on corticospinal excitability in the stimulated area of the primary motor cortex (M1). Here, we investigated the online effects of short periods of anodal and cathodal tDCS on human brain activity of healthy subjects and associated hemodynamics by concurrent blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) at 3T. Using a block design, 20s periods of tDCS at 1 mA intensity over the left M1 altered with 20s periods without tDCS. In different fMRI runs, the effect of anodal or cathodal tDCS was assessed at rest or during finger tapping. A control experiment was also performed, in which the electrodes were placed over the left and right occipito-temporo-parietal junction. Neither anodal nor cathodal tDCS over the M1 for 20s stimulation duration induced a detectable BOLD signal change. However, in comparison to a voluntary finger tapping task without stimulation, anodal tDCS during finger tapping resulted in a decrease in the BOLD response in the supplementary motor area (SMA). Cathodal stimulation did not result in significant change in BOLD response in the SMA, however, a tendency toward decreased activity could be seen. In the control experiment neither cathodal nor anodal stimulation resulted in a significant change of BOLD signal during finger tapping in any brain area including SMA, PM, and M1. These findings demonstrate that the well-known polarity-dependent shifts in corticospinal excitability that have previously been demonstrated using measurements of MEPs after M1 stimulation are not paralleled by analogous changes in regional BOLD signal. This difference implies that the BOLD signal and measurements of MEPs probe diverse physiological mechanisms. The MEP amplitude reflects changes in transsynaptic excitability of large pyramidal neurons while the BOLD signal is a measure of net synaptic activity of all cortical neurons

    Cortical representation of auricular muscles in humans: A robot-controlled TMS mapping and fMRI study.

    Get PDF
    BACKGROUND:Most humans have the ability to activate the auricular muscles. Although (intentional) control suggests an involvement of higher cortical centers underlying posterior auricular muscle (PAM) activation, the cortical representation of the auricular muscles is still unknown. METHODS:With the purpose of identifying a possible cortical representation area we performed automated robotic and image-guided transcranial magnetic stimulation (TMS) mapping (n = 8) and functional magnetic resonance imaging (fMRI) (n = 13). For topographical comparison, a similar experimental protocol was applied for the first dorsal interosseus muscle (FDI) of the hand. RESULTS:The calculated centers of gravity (COGs) of both muscles were located on the precentral gyrus with the PAM COGs located more laterally compared to the FDI. The distance between the mean PAM and mean FDI COG was 26.3 mm. The TMS mapping results were confirmed by fMRI, which showed a dominance of cortical activation within the precentral gyrus during the corresponding motor tasks. The correspondence of TMS and fMRI results was high. CONCLUSION:The involvement of the primary motor cortex in PAM activation might point to an evolved function of the auricular muscles in humans and/or the ability of intentional (and selective) muscle activation
    corecore